Java SE8 的流库

JAVA中,流旨在创建一种关注“做什么而非怎么做”的设计理念,我们无需关心流内具体的实现,而把更多精力放在流需要做什么上面。例如我们需要计算一个字符串数组中,长度大于10的有多少,参见下面的代码清单:

public static void main(String args[]) throws IOException{
    String contents = new String(Files.readAllBytes(Paths.get("/Users/liebes/Desktop/open.route")), StandardCharsets.UTF_8);
    List<String> words = Arrays.asList(contents.split("\\PL+"));
    long count = 0;
    // 怎么做
    for(String s : words){
        if(s.length() > 10) count++;
    }
    System.out.println(count);
    // 做什么
    count = words.stream().filter(s -> s.length() > 10).count();
    System.out.println(count);
    count = words.parallelStream().filter(s -> s.length() > 10).count();
    System.out.println(count);
}

第一种方式,是很容易想到的一种,循环遍历计算的一种方法,而第二种则是使用了流的概念。

Stream,流。我们可以理解为水流,所有的流操作都是惰性的,即当你访问数据的时候,相关操作才会执行。我们在水流的行进方向设置我们想要完成的操作,当水流经过时,就会执行相关的操作。例如上面的 count = words.stream().filter(s -> s.length() > 10).count(); 这一句,filter方法可以理解为一个水阀,控制水流。

流的创建方式


流的创建方式有很多种,可以使用 Stream 提供的工厂方法,也可以使用集合的转换方法。

当然流可以产生子流,两个流也可以合并成一个流,我们也可以通过某些操作,逐一处理流内的元素,例如 map flatMap filter 等方法。

下面是创建流的程序清单

import java.io.IOException;
import java.math.BigInteger;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.regex.Pattern;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Main {

    // 输出流
    public static <T> void show(String title, Stream<T> stream){
        final int SIZE = 10;
        List<T> firstElements = stream.limit(SIZE + 1).collect(Collectors.toList());
        System.out.println(title + ": ");
        for(int i = 0; i < firstElements.size(); i ++){
            if(i > 0) System.out.print(", ");
            if(i < SIZE)
                System.out.print(firstElements.get(i));
            else
                System.out.println("...");
        }
        System.out.println();
    }

    public static void main(String args[]) throws IOException{
        Path path = Paths.get("/Users/liebes/Desktop/open.route");
        String contents = new String(Files.readAllBytes(path), StandardCharsets.UTF_8);

        // 通过 Stream.of ,使用自负转数组获取流
        Stream<String> words = Stream.of(contents.split("\\PL+"));
        show("words", words);

        // 通过 Stream.of ,使用可变长参数
        Stream<String> song = Stream.of("gently", "down", "the", "stream");
        show("song", song);

        // 空流
        Stream<String> silence = Stream.empty();
        show("silence", silence);

        // 使用 lemada
        Stream<String> echos = Stream.generate(() -> "Echo");
        show("echos", echos);

        Stream<Double> randoms = Stream.generate(Math::random);
        show("randoms", randoms);

        Stream<BigInteger> integers = Stream.iterate(BigInteger.ONE, n->n.add(BigInteger.ONE));
        show("integers", integers);

        Stream<String> wordsAnotherWay = Pattern.compile("\\PL+").splitAsStream(contents);
        show("wordsAnotherWay", wordsAnotherWay);

        try(Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8)){
            show("lines", lines);
        }
    }
}

终结操作 & Optional API 使用方式


类似 filter map 等方法,会生成一个新的子流,也就是一个中间处理,流经过这些方法,数据做了处理,返回仍然是流。这种方法为非终结方法。

类似 count 等方法,会返回一个具体的结果,这种操作为非终结操作。

非终结操作可能带来的问题,就是没有满足条件的元素,比如 findFirst 方法,如果没有满足条件的元素,则可能导致空指针异常。

Optional 类是一种包装类,他存在的意义在于避免空指针异常的问题(当然这需要正确的使用)。

程序清单如下

import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.*;

public class Main {
    // 返回一个包装 1/x 的Optional类
    public static Optional<Double> inverse(Double x){
        return x == 0 ? Optional.empty() : Optional.of(1 / x);
    }

    // 返回一个包装 √x 的Optional类
    public static Optional<Double> squareRoot(Double x){
        return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));
    }

    public static void main(String args[]) throws IOException{
        Path path = Paths.get("/Users/liebes/Desktop/open.route");
        String contents = new String(Files.readAllBytes(path), StandardCharsets.UTF_8);
        List<String> wordList = Arrays.asList(contents.split("\\PL+"));

        Optional<String> optionalValue = wordList.stream()
                .filter(s -> s.contains("index"))
                .findFirst();
        // orElse() 提供包装值不存在的时候的默认值
        System.out.println(optionalValue.orElse("no word") + " contains index");

        Optional<String> optionalString = Optional.empty();
        String result = optionalString.orElse("N/A");
        System.out.println("result: " + result);
        result = optionalString.orElseGet(() -> Locale.getDefault().getDisplayName());
        System.out.println(result);

        try{
            result = optionalString.orElseThrow(IllegalStateException::new);
            System.out.println("result: " + result);
        }catch (Throwable e){
            e.printStackTrace();
        }
        optionalValue = wordList.stream()
                .filter(s -> s.contains("a"))
                .findFirst();
        // ifPresent() 当存在的时候才会执行里面的函数
        optionalValue.ifPresent(s -> System.out.println(s + " contains a"));

        Set<String> results = new HashSet<>();
        optionalValue.ifPresent(results::add);
        Optional<Boolean> added = optionalValue.map(results::add);
        System.out.println(added);

        System.out.println(inverse(4.0).flatMap(Main::squareRoot));
        System.out.println(inverse(-1.0).flatMap(Main::squareRoot));
        System.out.println(inverse(0.0).flatMap(Main::squareRoot));
        Optional<Double> result2 = Optional.of(-4.0)
                .flatMap(Main::inverse).flatMap(Main::squareRoot);
        System.out.println(result2);
    }
}

// output
index contains index
result: N/A
English (United States)
java.lang.IllegalStateException
    at java.util.Optional.orElseThrow(Optional.java:290)
    at Main.main(Main.java:34)
app contains a
Optional[false]
Optional[0.5]
Optional.empty
Optional.empty
Optional.empty

取出元素


取出流中的元素有两种方法,一种是使用 toArray 方法,转换成数组,另一种是使用 iterator 遍历。

Stream 提供了 collect 方法,通过传入的工厂方法,初始化元素。Collectors 类中提供了许多创建容器的工厂方法。

import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Main {
    // 将每一个元素中的特定字符过滤掉,返回流
    public static Stream<String> noVowels() throws IOException{
        String contents = new String(Files.readAllBytes(
                Paths.get("/Users/liebes/Desktop/open.route")),
                StandardCharsets.UTF_8
        );
        List<String> wordList = Arrays.asList(contents.split("\\PL+"));
        Stream<String> words = wordList.stream();
        return words.map(s -> s.replaceAll("[aeiouAEIOU]", ""));
    }

    // 显示
    public static <T> void show(String label, Set<T> set){
        System.out.print(label + ": " + set.getClass().getName());
        System.out.println("[" +
                set.stream().limit(10).map(Object::toString)
                        .collect(Collectors.joining(", ")) + "]");
    }

    public static void main(String args[]) throws IOException{
        Iterator<Integer> iter = Stream.iterate(0, n -> n + 1).limit(10).iterator();
        while(iter.hasNext()){
            System.out.println(iter.next());
        }
        // 由于在运行时不能泛化数组,所以返回的类型是 Object[]
        Object[] numbers = Stream.iterate(0, n -> n + 1).limit(10).toArray();
        System.out.println("Object array:" + numbers);

        try{
            Integer number = (Integer) numbers[0];
            System.out.println("number: " + number);
            System.out.println("The following statement throws an exception:");
            Integer[] numbers2 = (Integer[]) numbers;
        }
        catch (ClassCastException e){
            System.out.println(e);
        }

        // 生成特定类型的数组
        Integer[] numbers3 = Stream.iterate(0, n -> n + 1).limit(10).toArray(Integer[]::new);
        System.out.println("Integer array: " + numbers3);

        // 使用 collect 方法
        Set<String> noVowelSet = noVowels().collect(Collectors.toSet());
        show("noVowelSet", noVowelSet);

        TreeSet<String> noVowelTreeSet = noVowels().collect(
                Collectors.toCollection(TreeSet::new)
        );
        show("noVowelTreeSet", noVowelTreeSet);

        String result = noVowels().limit(10).collect(Collectors.joining());
        System.out.println("joining: " + result);
        result = noVowels().limit(10).collect(Collectors.joining(", "));
        System.out.println("joining with commas: " + result);

        IntSummaryStatistics summary = noVowels().collect(Collectors.summarizingInt(String::length));
        double averageWordLength = summary.getAverage();
        double maxWordLength = summary.getMax();
        System.out.println("Average word length: " + averageWordLength);
        System.out.println("Max word lengthL: " + maxWordLength);
        System.out.println("forEach: ");
        // forEach 接受一个闭包,类似 map 的用法
        noVowels().limit(10).forEach(System.out::println);
    }
}

收集结果到映射表


有时我们需要把流中的结果收集到映射表中,例如获得一个 id -> name 的一个映射表,此时可以使用 Collectors.toMap() 这个方法。

API 文档如下

public static <T,K,U,M extends Map<K,U>> Collector<T,?,M> toMap(
Function<? super T,? extends K> keyMapper,
Function<? super T,? extends U> valueMapper,
BinaryOperator mergeFunction,
Supplier mapSupplier
)

Returns a Collector that accumulates elements into a Map whose keys and values are the result of applying the provided mapping functions to the input elements.

If the mapped keys contains duplicates (according to Object.equals(Object)), the value mapping function is applied to each equal element, and the results are merged using the provided merging function. The Map is created by a provided supplier function.

  • Type Parameters:

    T - the type of the input elements

    K - the output type of the key mapping function

    U - the output type of the value mapping function

    M - the type of the resulting Map

  • Parameters:

    keyMapper - a mapping function to produce keys

    valueMapper - a mapping function to produce values

    mergeFunction - a merge function, used to resolve collisions between values associated with the same key, as supplied to Map.merge(Object, Object, BiFunction)

    mapSupplier - a function which returns a new, empty Map into which the results will be inserted

  • Returns:

    a Collector which collects elements into a Map whose keys are the result of applying a key mapping function to the input elements, and whose values are the result of applying a value mapping function to all input elements equal to the key and combining them using the merge function

其中后两个参数可以缺省。

前两个参数定义了 获取 KeyValue 的函数,当发生冲突的时候,则调用第三个参数进行merge,如果不定义,则点那个 Key 冲突则会抛出异常。

第四个参数定义了返回 Map 的具体类型,可以传入任何一个 Map 子类的 Supplier,例如 TreeMap::new

import java.io.IOException;
import java.util.*;
import java.util.function.Function;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Main {
    public static class Person{
        private int id;
        private String name;
        public Person(int id, String name){
            this.id = id;
            this.name = name;
        }

        public int getId(){
            return id;
        }

        public String getName(){
            return name;
        }

        public String toString(){
            return getClass().getName() + "[id=" + id + ", name=" + name;
        }
    }

    public static Stream<Person> people(){
        return Stream.of(new Person(1001, "peter"), new Person(1002, "paul"), new Person(1003, "Mary"));
    }

    public static void main(String args[]) throws IOException {
        // 缺省后两个参数
        Map<Integer, String> idToName = people().collect(
                Collectors.toMap(Person::getId, Person::getName)
        );
        System.out.println("idToName: " + idToName);

        // ID -> Person
        Map<Integer, Person> idToPerson = people().collect(
                Collectors.toMap(Person::getId, Function.identity())
        );
        System.out.println("idToPerson: " + idToPerson.getClass().getName() + idToPerson);

        // 当冲突的时候解决办法
        idToPerson = people().collect(
                Collectors.toMap(Person::getId, Function.identity(),
                        (existingValue, newValue) -> { throw new IllegalStateException(); },
                        TreeMap::new)
        );
        System.out.println("idToPerson: " + idToPerson.getClass().getName() + idToPerson);

        Stream<Locale> locales = Stream.of(Locale.getAvailableLocales());
        Map<String, String> languageNames = locales.collect(
                Collectors.toMap(
                        Locale::getDisplayName,
                        Locale::getDisplayLanguage,
                        (existingValue, newValue) -> existingValue
                )
        );
        System.out.println("languageNames: " + languageNames);
        locales = Stream.of(Locale.getAvailableLocales());

        // 结果冲突保留所有 Value
        Map<String, Set<String>> countryLanguageSets = locales.collect(
                Collectors.toMap(
                        Locale::getDisplayCountry,
                        l -> Collections.singleton(l.getDisplayLanguage()),
                        (a, b) -> {
                            Set<String> union = new HashSet<>(a);
                            union.addAll(b);
                            return union;
                        }
                )
        );
        System.out.println("countryLanguageSets: " + countryLanguageSets);
    }
}

// output
idToName: {1001=peter, 1002=paul, 1003=Mary}
idToPerson: java.util.HashMap{1001=Main$Person[id=1001, name=peter, 1002=Main$Person[id=1002, name=paul, 1003=Main$Person[id=1003, name=Mary}
idToPerson: java.util.TreeMap{1001=Main$Person[id=1001, name=peter, 1002=Main$Person[id=1002, name=paul, 1003=Main$Person[id=1003, name=Mary}
languageNames: {Japanese (Japan,JP)=Japanese, Ukrainian (Ukraine)=Ukrainian, =, ...
countryLanguageSets: {=[, Italian, Slovak, Russian, Hebrew, Belarusian, Serbian, ...

(有一些关于Supplier Function这些接口的使用,百度一下就懂了)

聚合操作


有时我们需要像数据库操作那样进行数据统计,需要用到一些聚合操作。例如统计每个省份的人数总和。

这里需要详细查看一下 collect 方法的API

collect

<R,A> R collect(Collector<? super T,A,R> collector)

Performs a mutable reduction operation on the elements of this stream using a Collector. A Collector encapsulates the functions used as arguments to collect(Supplier, BiConsumer, BiConsumer), allowing for reuse of collection strategies and composition of collect operations such as multiple-level grouping or partitioning.

If the stream is parallel, and the Collector is concurrent, and either the stream is unordered or the collector is unordered, then a concurrent reduction will be performed (see Collector for details on concurrent reduction.)

This is a terminal operation.

When executed in parallel, multiple intermediate results may be instantiated, populated, and merged so as to maintain isolation of mutable data structures. Therefore, even when executed in parallel with non-thread-safe data structures (such as ArrayList), no additional synchronization is needed for a parallel reduction.

Type Parameters:

R - the type of the result

A - the intermediate accumulation type of the Collector

Parameters:

collector - the Collector describing the reduction

Returns:

the result of the reduction

collect 方法接受一个收集器,返回值由具体收集器来决定。传入收集器的参数为流中元素 T,R为收集器返回的类型。

聚集操作主要使用 groupingBy 方法,该方法接受一个 Function 接口类型的参数,以及一个下游收集器。下游收集器负责处理聚集后子元素的操作。

这里需要明确流的流向,参考下面的代码

聚集操作 -> 每个key对应的子流由mapping收集器收集

-> 将元素类型为 City 的流映射成 String -> 子流由 maxBy 收集器收集

Map<String, Optional<String>> stateToLongestCityName = cities.collect(
        groupingBy(
                City::getState,
                mapping(City::getName, maxBy(Comparator.comparing(String::length)))
        )
);

下面是具体的程序清单

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

import static java.util.stream.Collectors.*;

public class Main {
    public static class City{
        private String name;
        private String state;
        private int population;

        public City(String name, String state, int population) {
            this.name = name;
            this.state = state;
            this.population = population;
        }

        public String getName() {
            return name;
        }

        public String getState() {
            return state;
        }

        public int getPopulation() {
            return population;
        }
    }

    public static Stream<City> readCities(String filename) throws IOException{
        return Files.lines(Paths.get(filename)).map(l -> l.split(", "))
                .map(a -> new City(a[0], a[1], Integer.parseInt(a[2])));
    }

    public static void main(String args[]) throws IOException{
        Stream<Locale> locales = Stream.of(Locale.getAvailableLocales());

        // 使用 toSet 收集器,将结果转换成SET
        locales = Stream.of(Locale.getAvailableLocales());
        Map<String, Set<Locale>> countryToLocaleSet = locales.collect(
                Collectors.groupingBy(Locale::getCountry, toSet())
        );
        System.out.println("countryToLocaleSet: " + countryToLocaleSet);

        // 使用 counting 收集器,讲结果转换成计数
        locales = Stream.of(Locale.getAvailableLocales());
        Map<String, Long> countryToLocalesCount = locales.collect(
                Collectors.groupingBy(Locale::getCountry, counting())
        );
        System.out.println("countryToLocalesCount: " + countryToLocalesCount);

        // 累加和
        Stream<City> cities = readCities("/Users/liebes/cities.txt");
        Map<String, Integer> stateToCityPopulation = cities.collect(
                Collectors.groupingBy(City::getState, summingInt(City::getPopulation))
        );
        System.out.println("stateToCItyPopulation: " + stateToCityPopulation);

        // 求出最值
        cities = readCities("/Users/liebes/cities.txt");
        Map<String, Optional<String>> stateToLongestCityName = cities.collect(
                groupingBy(
                        City::getState,
                        mapping(City::getName, maxBy(Comparator.comparing(String::length)))
                )
        );
        System.out.println("stateToLongestCityName: " + stateToLongestCityName);

        locales = Stream.of(Locale.getAvailableLocales());
        Map<String, Set<String>> countryToLanguages = locales.collect(
                groupingBy(
                        Locale::getDisplayCountry,
                        mapping(Locale::getDisplayLanguage, toSet())
                )
        );
        System.out.println("countryToLanguages: " + countryToLanguages);

        cities = readCities("/Users/liebes/cities.txt");
        Map<String, IntSummaryStatistics> stateToCityPopulationSummary = cities.collect(
                groupingBy(
                        City::getState, summarizingInt(City::getPopulation)
                )
        );
        System.out.println(stateToCityPopulationSummary.get("liaoning"));

        // reducing 操作,第一个参数应该是默认的第一个元素,且当流为空时作为返回值
        cities = readCities("/Users/liebes/cities.txt");
        Map<String, String> stateToCityNames = cities.collect(
                groupingBy(
                        City::getState,
                        reducing("", City::getName, (s, t) -> s.length() == 0 ? t : s + ", " + t)
                )
        );
        System.out.println("stateToCityName1: " + stateToCityNames);

        cities = readCities("/Users/liebes/cities.txt");
        stateToCityNames = cities.collect(
                groupingBy(
                        City::getState,
                        mapping(City::getName, joining(", "))
                )
        );
        System.out.println("stateToCityName2: " + stateToCityNames);
     }

}
// output
countryToLocaleSet: {=[, in, sl, ...], DE=[de_DE], PR=[es_PR], HK=[zh_HK], TW=[zh_TW], PT=[pt_PT], HN=[es_HN], DK=[da_DK], LT=[lt_LT], LU=[de_LU, fr_LU], ...}
countryToLocalesCount: {=46, DE=1, PR=1, HK=1, TW=1, HR=1, DO=1, UA=1, YE=1, LY=1, HU=1, QA=1, MA=1, DZ=1, ME=2, ID=1, ...}
stateToCItyPopulation: {jilin=56, tianjin=20, beijing=200, liaoning=259, heilongjiang=70}
stateToLongestCityName: {jilin=Optional[jilin], tianjin=Optional[tianjin], beijing=Optional[beijing], liaoning=Optional[shenyang], heilongjiang=Optional[haerbin]}
countryToLanguages: {=[, Italian, Slovak, Russian, Hebrew, Belarusian, Serbian, German, Slovenian, Swedish, Turkish, Ukrainian, ...], Cyprus=[Greek], Sudan=[Arabic], Malaysia=[Malay], Paraguay=[Spanish], Portugal=[Portuguese], Oman=[Arabic], ...}
IntSummaryStatistics{count=3, sum=259, min=10, average=86.333333, max=149}
stateToCityName1: {jilin=jilin, tianjin=tianjin, beijing=beijing, liaoning=shenyang, yingkou, dalian, heilongjiang=haerbin, mohe}
stateToCityName2: {jilin=jilin, tianjin=tianjin, beijing=beijing, liaoning=shenyang, yingkou, dalian, heilongjiang=haerbin, mohe}
// cities.txt
shenyang, liaoning, 100
tianjin, tianjin, 20
yingkou, liaoning, 10
beijing, beijing, 200
dalian, liaoning, 149
jilin, jilin, 56
haerbin, heilongjiang, 14
mohe, heilongjiang, 56

约简操作 & 初始数据流

约简操作是终结操作,用来将整个流约简为一个数据,比如求和操作。

U reduce(U identity,
BiFunction<U,? super T,U> accumulator,
BinaryOperator combiner)
Performs a reduction on the elements of this stream, using the provided identity, accumulation and combining functions. This is equivalent to:
U result = identity;
for (T element : this stream)
result = accumulator.apply(result, element)
return result;
but is not constrained to execute sequentially.
The identity value must be an identity for the combiner function. This means that for all u, combiner(identity, u) is equal to u. Additionally, the combiner function must be compatible with the accumulator function; for all u and t, the following must hold:

 combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)

This is a terminal operation.

reduce函数接收三个参数,第三个参数将并行操作的结果合并。因此要求第二个参数的二元操作满足交换律。

前面提到的流的操作都是针对 Object 类型,有时我们更需要一些包装了基本类型的流,例如 StringStream IntStream DoubleStream 等

下方是 IntSteam 相关的程序清单

import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;

public class Main {
    public static void show(String title, IntStream stream){
        final int SIZE = 10;
        int[] firstElements = stream.limit(SIZE + 1).toArray();
        System.out.print(title + ": [");
        int i;
        for(i = 0; i < SIZE && i < firstElements.length; i ++){
            System.out.print(firstElements[i]);
            if(i < firstElements.length - 1)
                System.out.print(", ");
        }
        if(i < firstElements.length)
            System.out.print("...");
        System.out.println("]");
    }

    public static void main(String args[]) throws IOException{
        // 整数流
        IntStream is1 = IntStream.generate(() -> (int)(Math.random() * 100));
        show("is1", is1);
        // 左闭右开
        IntStream is2 = IntStream.range(5, 10);
        show("is2", is2);
        // 左闭右闭
        IntStream is3 = IntStream.rangeClosed(5, 10);
        show("is3", is3);
        String contents = new String(Files.readAllBytes(Paths.get("/Users/liebes/Desktop/open.route")), StandardCharsets.UTF_8);
        Stream<String> words = Stream.of(contents.split("\\PL+"));
        // 通过mapToInt方法转换成整数流
        IntStream is4 = words.mapToInt(String::length);
        show("is4", is4);
        // 获取 Unicode 编码
        String sentence = "\uD835\uDD46 is the set of octonions.";
        System.out.println(sentence);
        IntStream codes = sentence.codePoints();
        System.out.println(codes.mapToObj(c -> String.format("%X", c)).collect(
                Collectors.joining()
        ));
        // boxed 将 IntStream 重新变成包装 Integer 的 Stream
        Stream<Integer> integers = IntStream.range(0, 100).boxed();
        IntStream is5 = integers.mapToInt(Integer::intValue);
        show("is5", is5);
    }
}
// output
is1: [7, 61, 22, 99, 45, 81, 42, 84, 97, 82, ...]
is2: [5, 6, 7, 8, 9]
is3: [5, 6, 7, 8, 9, 10]
is4: [3, 8, 3, 5, 3, 13, 4, 4, 3, 4, ...]
𝕆 is the set of octonions.
1D5462069732074686520736574206F66206F63746F6E696F6E732E
is5: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...]

并行流 Parallel Stream

TODO